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The preparation of stable 4-7r-electron 4-membered rings has 
captured the imaginations of generations of chemists.1 None
theless, only a very few substituted cyclobutadienes2 A (X = 
CR') and related azetes3 A (X = N) have been isolable at room 
temperature. Recently, some 1 X5,3X5-diphosphetes4 B (X = CR') 
and one l,3,2A5,4X5-diazadiphosphete5 (cyclodiphosphazene) B 
(X = N) have been prepared. High-level calculations6 concluded 
that the stability of cyclodiphosphazenes is due to their zwitterionic 
character, although some back bonding from N to P occurs; in 
other words, the phosphorus-nitrogen bond order is between 1 
and 2. The next question was whether the presence of only one 
second row element would be sufficient to stabilize a 4-7r-electron 
4-membered ring (C) (Scheme I). Here we report the synthesis 
of the l,2X5-azaphosphete 4 (C, X = N), the first example of this 
new class of compounds. 

It is known that vapor flash pyrolysis of 1,2,3-triazines affords 
azetes by extrusion of dinitrogen.3d'c'7 On the other hand, although 
diazo derivatives and nitrile imines are typical 1,3-dipoles,8 it has 
been shown that the phosphanyldiazo derivative D9a and the 
A^-phosphanylnitrile imine E9b can formally act as 1,4-dipoles 
toward electron-poor alkynes, affording 6-membered rings F and 
G, respectively. Thus, it was tempting to extend the formal 1,4-
dipolar reactivity of phosphanyl-substituted 1,3-dipoles to phos-
phanyl azides (Y = Z = N) to prepare a l,2,3,4X5-triazaphos-
phinine (Scheme II). 

Bis(diisopropylamino)phosphanylazide I10 was chosen since 
(i) it is one of the very rare stable phosphorus(HI)azidesn and 
(ii) diisopropylamino groups should stabilize the positively charged 
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phosphorus atom of the desired azaphosphete. A clean reaction 
occurred when azide 1 was reacted overnight at room temperature 
with dimethyl acetylenedicarboxylate, affording the desired 
6-membered ring 3, which was obtained as yellow crystals from 
an ether solution (75% yield, mp 122-123 0C) (Scheme III). The 
isomeric structure 2 was easily ruled out by NMR spectrosco
py .12.13 of special interest, Cl-mass spectroscopy (NH3) of 3 
gives a M + 1 - N2 peak as the heaviest ion, suggesting the easy 
elimination of N2. 

Heating 3 in refluxing toluene for 14 h gave rise to the 
azaphosphete 4,13 which was isolated in 80% yield as pale yellow 
crystals from a cold saturated ether solution (Scheme IV). The 
deshielding of the 31P chemical shift from 3 to 4 (Ar5 = 47) is in 
good agreement with the 4-membered ring structure, since a 
similar phenomenon has already been observed going from 
cyclotriphosphazene to cyclodiphosphazene (A5 = 20).5b In the 

(12) The X3-phosphorus atom of 2 would give a signal around +100 ppm. 
For examples: 1, 6(31P) + 108; [(1'-Pr)2N]2PNMe2, S(31P) +98. 

(13) 3: 1H NMR (CDCl3, 200 MHz) S 1.08 (d, /H H = 6.9 Hz, 12 H, 
CW3CHN), 1.27 (d, JHH = 6.9 Hz, 12 H, CZf3CHN), 3.71 (s, 3 H, CH3O), 
3.85 (sept d, Jm = 16.9 Hz, JHH = 6.9 Hz, 4 H, CH3CWN), 3.87 (s, 3 H, 
CH3O); 13C NMR (CDCl3,50.323 MHz) S 22.93,23.62 (s, CH3CHN), 47.62 
(d, JK = 4.7 Hz, CH3CHN), 51.70, 52.62 (s, CH3O), 81.77 (d, Jf0 =113.2 
Hz, PC), 150.44 (d, JK = 2.4 Hz, CN), 166.23 (d, JK = 11.6 Hz, CO), 
166.81 (d, JK = 2.7 Hz, CO); 31P NMR (THF, 32.438 MHz) S = +5.74; 
IR (THF) 1748,1716 cm-'(CO). Anal. Calcd for Ci8H34O4N5P: C, 52.04; 
H,8.25;N, 16.86. Found: C,52.34;H,8.27;N, 17.03. 4: 1HNMR(CDCl3, 
200 MHz) S 1.24 (d, JHH = 6.8 Hz, 12 H, CW3CHN), 1.26 (d, JHH = 6.8 
Hz, 12 H, CW3CHN), 3.52 (s, 3 H, CH3O), 3.68 (sept d, /PH = 18.4 Hz, / H H 
= 6.8 Hz, 4 H, CH3CWN), 3.82 (s, 3 H, CH3O); 13C NMR (CDCl3, 50.323 
MHz) a 21.83, 22.12 (s, CH3CHN), 47.50 (d, Jf0 = 4.9 Hz, CH3CHN), 
49.63 (d, JK = 2.1 Hz, CH3O), 52.16 (s, CH3O), 91.88 (d, JK = 81.6 Hz, 
PC), 158.30 (s, CO), 164.05 (d, JK = 64.3 Hz, CO), 182.37 (d, JK = 28.0 
Hz, CN); 31P NMR (THF, 32.438 MHz) S = +52.46; IR (THF) 1743,1660 
cm-1 (CO); CIMS (M+ + 1) 388. Anal. Calcd for Ci8H34O4N3P: C, 55.80; 
H, 8.84; N, 10.85. Found: C, 55.79; H, 8.79; N, 10.82. 
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Figure 1. ORTEP plot of 4 showing the numbering scheme used. 
Ellipsoids are scaled to enclose 35% of the electronic density. Hydrogen 
atoms are omitted. Pertinent bond lengths (A) and bond angles (deg) 
areasfollows: C1-C21.406(6),C2-N11.352(5),Nl-P 1.702(3),P-Cl 
1.764(4), P-N21.626(3), P-N3 1.629(3),C1-C3 1.419(6), C3-011.214-
(5),C2-C5 1.497(6), C5-03 1.199(6), C1-C2-N1 109.7(3), C2-N1-P 
86.5(2), Nl-P-Cl 81.2(2), P-C1-C2 82.6(3), P-N3-C13 117.7(3), 
P-N3-C16123.9(3),C13-N3-C16114.7(3), P-N2-C7 117.5(3),P-N2-
ClO 124.5(3), C7-N2-C10 115.8(3). 

same way, the deshielding of the CN 13C chemical shift from 3 
(150.44 ppm) to 4 (182.37 ppm) is comparable to that observed 
going from triazines (~160 ppm)14 to azete (~200 ppm).3 

The structure of 4 has been clearly established by a single 
crystal X-ray diffraction study.15 The thermal ellipsoid plot of 
the molecule is shown in Figure 1, with pertinent structural 
parameters listed in the legend. As expected for a cyclobutadiene 
derivative, the four-membered ring has a planar structure 

(14) Katritzky, A. R.; Rees, C W . Comprehensive Heterocyclic Chemistry; 
Pergamon Press: Oxford, 1984. 

(15) Crystal data for 4: CuH34N3O4P, mol wt = 387.5, monoclinic, space 
group FIiIc a - 10.586(1) A, b - 12.354(1) A, c = 17.019(2) A, /3 = 92.32-
Tl)0, V= 2223.9(7) A', Z = 4, D^M = 1.157 g cm-', X(Mo Ka) = 0.710 73 
A (graphite monochromated), n = 1.43 cm-1. An Enraf-Nonius CAD4 
diffractometer was used to collect 3094 independent reflections (3 < 29 < 
46°) on a crystal of 0.50- X 0.15- X 0.125-mm dimension. Data were corrected 
for Lorentz and polarization effects but not for absorption. A linear decay 
correction of 5% was applied. 1772 reflections were considered observed [F0

2 

> Ia(F0
1)]. All non-hydrogen atoms were located by direct methods, and 

they were refined anisotropically. The hydrogen atoms were included as 
idealized contributions. R = 0.042, Rw = 0.042, 235 variables, S = 1.16, 
maximum residual peak of 0.17 e A-3. 
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(maximumdeviation 0.003(4) A). Although the C l - P - N l angle 
[81.2(2)°] is small, the large N1-C2-C1 angle [109.7(3)°] 
induces a short diagonal P—C2 distance [2.109(4) A]. This short 
distance between 1,3-centers seems to be a characteristic feature 
of polarized 4-7r-electron 4-membered rings such as 1,3-push-
2,4-pull cyclob adienes,2" azete,3c diphosphete,4* and cyclo-
diphosphazene.5 The exocyclic phosphorus-nitrogen bond lengths 
[1.629(3), 1.626(3) A] are shorter than the endocyclic P-Nl 
bond length [1.702(3) A] and are comparable to those observed 
in bis(diisopropylamino)phosphenium salts (1.61 A).16 This is 
an indication of a positive charge delocalization on the N 2 - P -
N3 fragment, which is confirmed by the planarity of N2 and N3. 
TheNl-C2 [1.352(5) A] andC2-Cl [1.406(6) A] bond lengths 
are half-way between those of single and double bonds, indicating 
that the N1-C2-C1 part of the ring can be regarded as an anionic 
allylic system. Thus, the 4-x-electron 4-membered ring 4 is best 
described by the "non-antiaromatic" structure 4'. 

^* Ql 
R R H.CO,CH, 

4' 

The surprising stability of 4 (air-stable crystals, mp 109-110 
0 C without decomposition) is due not only to its non-antiaromatic 
structure but also to both the high thermodynamic energy of the 
corresponding phosphorus fragments (>PssC— or >PssN), 
preventing dissociation, and the steric factors which hinder 
polymerization. 
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